

Welcome to rhizoscan’s documentation!

Module description

Summary

	Version

	1.0.0

	Release

	1.0.0

	Date

	Apr 30, 2018

	Author

	See Authors section

	ChangeLog

	See ChangeLog section

Overview

This VPlant package provide a set of tool to analyse 2D images of root system. The main goal is to allow extraction of Root System Architecture (RSA) as Multiscale Tree Graph (MTG) from images and image sets. It also provides typical mesurement analysis, such as root axes length (primary, secondary, total) and comparative plots.

Documentation

	Installation
	Installation on Ubuntu with Conda

	User Manual
	Root image analysis with python

	Root image analysis with visualea

	The image pipeline

	Image Database

	Reference Guide

Authors

Julien Diener

ChangeLog

Use RST format for the change log or put a link to the wiki

	08/07 : add this package layout

License

VPlants.RhizoScan is released under a Cecill-C License.

Note

Cecill-C [http://www.cecill.info/licences/Licence_CeCILL-C_V1-en.html]
license is a LGPL compatible license.

Indices and tables

	Index

	Module Index

	Search Page

Installation

Install

	Installation on Ubuntu with Conda
	0. System Install

	1. Download and install miniconda

	2. Create your own virtual environment

	3. Install Rhizoscan dependencies
	3.1 Download & install TreeEditor

	3.2 Download & install RSML-conversion-tools

	4. Install & test Rhizoscan

Installation on Ubuntu with Conda

Contents

	Installation on Ubuntu with Conda

	0. System Install

	1. Download and install miniconda

	2. Create your own virtual environment

	3. Install Rhizoscan dependencies

	3.1 Download & install TreeEditor

	3.2 Download & install RSML-conversion-tools

	4. Install & test Rhizoscan

0. System Install

sudo apt-get install git

1. Download and install miniconda

See : http://conda.pydata.org/miniconda.html

wget https://repo.continuum.io/miniconda/Miniconda2-latest-Linux-x86_64.sh
chmod +x Miniconda2-latest-Linux-x86_64.sh
./Miniconda2-latest-Linux-x86_64.sh

2. Create your own virtual environment

conda create --name rhizoscan python

Activate your virtual environnement each time
source activate rhizoscan

3. Install Rhizoscan dependencies

conda install sphinx jupyter nose coverage anaconda-client
conda install numpy scipy matplotlib scikit-image opencv pil pillow scikit-learn
conda install -c openalea openalea.mtg openalea.vpltk openalea.visualea openalea.core

3.1 Download & install TreeEditor

conda install -c openalea -c openalea/label/unstable openalea.treeeditor

3.2 Download & install RSML-conversion-tools

conda install -c openalea -c openalea/label/unstable rsml

4. Install & test Rhizoscan

git clone https://github.com/openalea-incubator/rhizoscan
cd rhizoscan
python setup.py develop --prefix=$CONDA_PREFIX
nosetests test

User Manual

	Version

	1.0.0

	Release

	1.0.0

	Date

	Apr 30, 2018

This manual explains how to use this package to analyse image of root system architecture. It thus focus on the highest-level functions designed for end-user, and requires very little experience in computer science.

For a complete reference guide of all the package content, see rhizoscan.

	Root image analysis with python
	Step by step image analysis

	Using the arabidopsis pipeline

	Root image analysis with visualea
	Analysis of one root image with visualea

	Analysis of an image database with visualea

	Visualisation of the extracted root system with visualea

	Root image analysis with python

	The image pipeline
	The arabidopsis pipeline

	Image Database
	Database file system

	Database operations

Root image analysis with python

This tutorial provides the description of how to do analyse root images with rhiziscan using the python programming language. A minimal knowledge [http://docs.python.org/2/tutorial/introduction.html] of python is recommanded.

Content of this tutorial

	Step by step image analysis

	Using the arabidopsis pipeline

	Dataset analysis

	Visualisation and measurements

	To process one root image, you will needs:

	
	to select an image (or image file name) to be analysed

	to choose the suitable pipeline parameters

In this tutorial, we use an image provided with the package:

>>> from rhizoscan import get_data_path
>>>
>>> filename = get_data_path('pipeline/arabido.png')
>>> assert os.path.exists(filename), "could not find test image file:"+filename

Step by step image analysis

First import the rhizoscan modules we need, and matplotlib to view intermediary output:

>>> from rhizoscan.root.pipeline import load_image, detect_petri_plate, compute_graph, compute_tree
>>> from rhizoscan.root.pipeline.arabidopsis import segment_image, detect_leaves
>>>
>>> from matplotlib import pyplot as plt

First step: load the image from file:

>>> image = load_image(image_filename)
>>> plt.imshow(image);

[image: ../_images/tuto_script_image.png]
Then find the petri plate in the image, as a image mask

>>> pmask, px_scale, hull = detect_petri_plate(image,border_width=25, plate_size=120, fg_smooth=1)
>>> plt.imshow(pmask);

Segment the root (and leaf) pixels:

>>> rmask, bbox = segment_image(image,pmask,root_max_radius=5)
>>> plt.imshow(rmask);

[image: ../_images/tuto_script_rmask.png]
Find the seed of the root system:

>>> seed_map = detect_leaves(rmask, image, bbox, plant_number=2, leaf_bbox=[0,0,1,.4])
>>> plt.imshow(seed_map);
>>> #plt.imshow(seed_map+rmask); # to view the seed map on top of the binary mask

[image: ../_images/tuto_script_seed_map.png]
Compute the graph for the root system

>>> graph = compute_graph(rmask,seed_map,bbox)
>>> graph.plot()

[image: ../_images/tuto_script_graph.png]
Finally, compute the RSA tree:

>>> tree = compute_tree(graph, px_scale=px_scale)
>>> tree.plot()

[image: ../_images/tuto_script_tree.png]
It is probably necessary to convert this RSA tree to MTG format, for interoperability:

>>> from rhizoscan.root.graph.mtg import tree_to_mtg
>>> rsa = tree_to_mtg(tree)

To save this (root) mtg in a rsml [http://rootsystemml.github.io/] file:

>>> from rsml import mtg2rsml
>>> from rsml.continuous import discrete_to_continuous
>>>
>>> rsa_cont = discrete_to_continuous(rsa.copy())
>>> mtg2rsml(rsa_cont,'some_file.rsml')

Here is the full code:

>>> from rhizoscan.root.pipeline import load_image, detect_petri_plate, compute_graph, compute_tree
>>> from rhizoscan.root.pipeline.arabidopsis import segment_image, detect_leaves
>>>
>>> from matplotlib import pyplot as plt
>>>
>>> image = load_image(image_filename)
>>> plt.imshow(image);
>>>
>>> rmask, bbox = segment_image(image,pmask,root_max_radius=5)
>>> plt.imshow(rmask);
>>>
>>>
>>> seed_map = detect_leaves(rmask, image, bbox, plant_number=2, leaf_bbox=[0,0,1,.4])
>>> plt.imshow(seed_map);
>>> #plt.imshow(seed_map+rmask);
>>>
>>> graph = compute_graph(rmask,seed_map,bbox)
>>> graph.plot()
>>>
>>> tree = compute_tree(graph, px_scale=px_scale)
>>> tree.plot()
>>>
>>> from rhizoscan.root.graph.mtg import tree_to_mtg
>>> rsa = tree_to_mtg(tree)

Using the arabidopsis pipeline

The above steps are all contained in the arabidopsis pipeline which is used slike this:

>>> from rhizoscan.root.pipeline.arabidopsis import pipeline
>>> from rhizoscan.datastructure import Mapping
>>>
>>> # 1. Create a namespace to execute the pipeline with input image filename and parameters
>>> d = Mapping(filename=filename, plant_number=2,
>>> fg_smooth=1, border_width=.08,leaf_bbox=[0,0,1,.4],root_max_radius=5, verbose=1)
>>>
>>> # 2. Run the pipeline
>>> pipeline.run(namespace=d);
>>>
>>> # 3. Access computed data (example)
>>> d.tree.plot() # plot the estimated RSA (use an internal RSA graph structure)
>>>
>>> d.rsa # estimated RSA as a MTG
>>> # <openalea.mtg.mtg.MTG at 0x.....>

	TODO

	explain the relation between pipeline and namespace

Computed data, final RSA as well as intermediate data, can be store in a given output folder. To do this, one should set the output directory for the namespace, and give the list of data that should be stored:

>>> # set the namespace output directory
>>> import tempfile, os
>>> outdir = tempfile.mkdtemp() # create a temporary directory
>>> d.set_file(os.path.join(outdir,'test'), storage=True)
>>>
>>> # run the pipeline, setting which data to store
>>> pipeline.run(namespace=d, store=['pmask','rmask','seed_map','tree','rsa'])

	TODO

	describe pipeline parameters, or link to pipeline doc

Note

The file name of the storage files will all start by the value of test and a suffix made from the data name. E.g. the ̀``seed_map`` image use the suffix “_seed_map.png”, so in our example a file [outdir]/test_seed_map.png will be created.

Once you have finished with the computed data, don’t forget to delete it: either manually using your OS file manager, or with python:

import shutil
shutil.rmtree(outdir)

Dataset analysis

	TODO

	update doc

An image database can be process easily. For example, using the testing databse of rhizoscan, this is done using the following:

from rhizoscan import get_data_path
from rhizoscan.root.pipeline import database
from rhizoscan.root.pipeline.arabidopsis import pipeline

db = get_data_path('pipeline/arabidopsis/database.ini')
db, invalid, outdir = database.parse_image_db(db)

for elt in db:
 pipeline.run(elt)

Todo

To finish

	what are hidden the paremeter => cf pipeline api

	how to get output data (ex ‘tree’)

Finally, if your don’t need it anymore, remove the output directory used by the pipeline:

import shutil
shutil.rmtree(outdir)

Visualisation and measurements

Note

Most of the following requires a matplotlib

Todo

split in the 2 previous parts?

plotting graph & tree
exemple of getting some measurement from a tree: root.measurement

Root image analysis with visualea

Visualea [http://openalea.gforge.inria.fr/doc/openalea/visualea/doc/_build/html/contents.html] provide a graphical iterface to use openalea components which does not require any programming. If you have installed the rhizoscan package, it should appear in the package manager [http://openalea.gforge.inria.fr/doc/openalea/visualea/doc/_build/html/user/manual.html#package-manager] (click on the triangle on the left of rhizoscan in the package manager to open it and display the package content):

[image: ../_images/rhizoscan_visualea.png]
Three tutorials have been made to show how to use this package functionalities. The rhizoscan package comes with a couple of image data which the following tutorials are made to process by default: so you can just go and try.

Analysis of one root image with visualea

This allows to extract root system architecture from one image file. It is also usefull for testing the image pipeline an a couple of images before processing a whole image data set.

Analysis of an image database with visualea

Once the pipeline parameters are choosen, a large image set can be analysed automatically using a database system. This tutorial show how this works.

Visualisation of the extracted root system with visualea

Here this tutorial show simple ways to plot extracted root system, show comparative measurement on processed database, and export analysis to table files.

Related documentation

	Analysis of one root image with visualea

	Analysis of an image database with visualea

	Visualisation of the extracted root system with visualea
	Ploting comparative histogram

	Root image analysis with python
	Step by step image analysis

	Using the arabidopsis pipeline

Analysis of one root image with visualea

Todo

all

Analysis of an image database with visualea

Automatical analysis of a set of root images can be done using an image database. The rhizoscan package provide a visualea dataflow for this task. To open it, doulbe click on arabidopsis pipeline at the bottom of the rhizoscan package:

[image: ../_images/arabidopsis_dataflow.png]
This dataflow is made of two parts:

	
	The top one loads an image database. It contains 2 modules:

	
	The first is to indicates the database file to load (see image database for details). By default it points to a little example database contained in the rhizoscan package. If you want toselect another file, double click on the top modules. It opens a file selection user interface where you can browse for the database file you want to load. You will need to have a valid database file in ini file format: see the page on image database for a description.

	The second is the module that load all images from the database. It does not require any configuration.

	
	The bottom one extracts the root systems from all images. It has two main modules:

	
	The pipeline module is the image arabidopsis image pipeline which analysis root images.

	The lower module named run is the “start button”: to apply the image pipeline analysis to the whole database, right click on the run module then select run in the menu.

Visualisation of the extracted root system with visualea

Ploting comparative histogram

The rhizoscan package provide a simple tool to compare measured root system visually: open the dataflow arabidopsis histogram analysis at the bottom of the rhizoscan package:

[image: ../_images/histogram_analysis_dataflow.png]

	This dataflow as two parts:

	
	The upper part is the database loader: select the database file using the top modules (named databse.ini)

	The second part provide the plotting tools:
- the module cmp_plot do the plot. To start it right click on it and select run. The plot is done with respect to three main inputs
- the one on the left (axe1_length in the example) is the measurement to plot. Double click on the module to open the selection interface.
- The center one (age) indicates the metadata name that contains the

Root image analysis with python

This tutorial provides the description of how to do analyse root images with rhiziscan using the python programming language. A minimal knowledge [http://docs.python.org/2/tutorial/introduction.html] of python is recommanded.

Content of this tutorial

	Step by step image analysis

	Using the arabidopsis pipeline

	Dataset analysis

	Visualisation and measurements

	To process one root image, you will needs:

	
	to select an image (or image file name) to be analysed

	to choose the suitable pipeline parameters

In this tutorial, we use an image provided with the package:

>>> from rhizoscan import get_data_path
>>>
>>> filename = get_data_path('pipeline/arabido.png')
>>> assert os.path.exists(filename), "could not find test image file:"+filename

Step by step image analysis

First import the rhizoscan modules we need, and matplotlib to view intermediary output:

>>> from rhizoscan.root.pipeline import load_image, detect_petri_plate, compute_graph, compute_tree
>>> from rhizoscan.root.pipeline.arabidopsis import segment_image, detect_leaves
>>>
>>> from matplotlib import pyplot as plt

First step: load the image from file:

>>> image = load_image(image_filename)
>>> plt.imshow(image);

[image: ../_images/tuto_script_image.png]
Then find the petri plate in the image, as a image mask

>>> pmask, px_scale, hull = detect_petri_plate(image,border_width=25, plate_size=120, fg_smooth=1)
>>> plt.imshow(pmask);

Segment the root (and leaf) pixels:

>>> rmask, bbox = segment_image(image,pmask,root_max_radius=5)
>>> plt.imshow(rmask);

[image: ../_images/tuto_script_rmask.png]
Find the seed of the root system:

>>> seed_map = detect_leaves(rmask, image, bbox, plant_number=2, leaf_bbox=[0,0,1,.4])
>>> plt.imshow(seed_map);
>>> #plt.imshow(seed_map+rmask); # to view the seed map on top of the binary mask

[image: ../_images/tuto_script_seed_map.png]
Compute the graph for the root system

>>> graph = compute_graph(rmask,seed_map,bbox)
>>> graph.plot()

[image: ../_images/tuto_script_graph.png]
Finally, compute the RSA tree:

>>> tree = compute_tree(graph, px_scale=px_scale)
>>> tree.plot()

[image: ../_images/tuto_script_tree.png]
It is probably necessary to convert this RSA tree to MTG format, for interoperability:

>>> from rhizoscan.root.graph.mtg import tree_to_mtg
>>> rsa = tree_to_mtg(tree)

To save this (root) mtg in a rsml [http://rootsystemml.github.io/] file:

>>> from rsml import mtg2rsml
>>> from rsml.continuous import discrete_to_continuous
>>>
>>> rsa_cont = discrete_to_continuous(rsa.copy())
>>> mtg2rsml(rsa_cont,'some_file.rsml')

Here is the full code:

>>> from rhizoscan.root.pipeline import load_image, detect_petri_plate, compute_graph, compute_tree
>>> from rhizoscan.root.pipeline.arabidopsis import segment_image, detect_leaves
>>>
>>> from matplotlib import pyplot as plt
>>>
>>> image = load_image(image_filename)
>>> plt.imshow(image);
>>>
>>> rmask, bbox = segment_image(image,pmask,root_max_radius=5)
>>> plt.imshow(rmask);
>>>
>>>
>>> seed_map = detect_leaves(rmask, image, bbox, plant_number=2, leaf_bbox=[0,0,1,.4])
>>> plt.imshow(seed_map);
>>> #plt.imshow(seed_map+rmask);
>>>
>>> graph = compute_graph(rmask,seed_map,bbox)
>>> graph.plot()
>>>
>>> tree = compute_tree(graph, px_scale=px_scale)
>>> tree.plot()
>>>
>>> from rhizoscan.root.graph.mtg import tree_to_mtg
>>> rsa = tree_to_mtg(tree)

Using the arabidopsis pipeline

The above steps are all contained in the arabidopsis pipeline which is used slike this:

>>> from rhizoscan.root.pipeline.arabidopsis import pipeline
>>> from rhizoscan.datastructure import Mapping
>>>
>>> # 1. Create a namespace to execute the pipeline with input image filename and parameters
>>> d = Mapping(filename=filename, plant_number=2,
>>> fg_smooth=1, border_width=.08,leaf_bbox=[0,0,1,.4],root_max_radius=5, verbose=1)
>>>
>>> # 2. Run the pipeline
>>> pipeline.run(namespace=d);
>>>
>>> # 3. Access computed data (example)
>>> d.tree.plot() # plot the estimated RSA (use an internal RSA graph structure)
>>>
>>> d.rsa # estimated RSA as a MTG
>>> # <openalea.mtg.mtg.MTG at 0x.....>

	TODO

	explain the relation between pipeline and namespace

Computed data, final RSA as well as intermediate data, can be store in a given output folder. To do this, one should set the output directory for the namespace, and give the list of data that should be stored:

>>> # set the namespace output directory
>>> import tempfile, os
>>> outdir = tempfile.mkdtemp() # create a temporary directory
>>> d.set_file(os.path.join(outdir,'test'), storage=True)
>>>
>>> # run the pipeline, setting which data to store
>>> pipeline.run(namespace=d, store=['pmask','rmask','seed_map','tree','rsa'])

	TODO

	describe pipeline parameters, or link to pipeline doc

Note

The file name of the storage files will all start by the value of test and a suffix made from the data name. E.g. the ̀``seed_map`` image use the suffix “_seed_map.png”, so in our example a file [outdir]/test_seed_map.png will be created.

Once you have finished with the computed data, don’t forget to delete it: either manually using your OS file manager, or with python:

import shutil
shutil.rmtree(outdir)

Dataset analysis

	TODO

	update doc

An image database can be process easily. For example, using the testing databse of rhizoscan, this is done using the following:

from rhizoscan import get_data_path
from rhizoscan.root.pipeline import database
from rhizoscan.root.pipeline.arabidopsis import pipeline

db = get_data_path('pipeline/arabidopsis/database.ini')
db, invalid, outdir = database.parse_image_db(db)

for elt in db:
 pipeline.run(elt)

Todo

To finish

	what are hidden the paremeter => cf pipeline api

	how to get output data (ex ‘tree’)

Finally, if your don’t need it anymore, remove the output directory used by the pipeline:

import shutil
shutil.rmtree(outdir)

Visualisation and measurements

Note

Most of the following requires a matplotlib

Todo

split in the 2 previous parts?

plotting graph & tree
exemple of getting some measurement from a tree: root.measurement

The image pipeline

The analysis of root system from images is done using on of a set of image pipelines. Each pipeline comes as a all-in-one function that iteratively run the processing modules of the pipeline.

	These modules typically do each of the following tasks:

	
	frame detection

	image segmentation

	seeds detection

	convertion to graph

	extraction of the Root System Architecture

The arabidopsis pipeline

This pipeline has been developed to analysis image of arabidopsis root system grown and imaged using a specific experimental protocol. It contains the following steps:

	
	Petri dish detection

	The root system have been growned and imaged in a squared Petri dish which is marked by four hand drawn curves, one on each corner, using a black pen.

	
	Image segmentation

	It follows the standard algorithm which first estimate and remove the lighting background using an overestimate of the maximum root radius, in pixels. It then separate root area from background using a simple expectation maximization (EM) algorithm.

	
	Leaves detections

	The analysis pipeline uses the detected leaves to determine automatically the starts of the root systems. This is done by image segmentation based on the leaves opacity being higher than the root axes.

	
	Convertion to graph

	This is the standard algorithm and doesn’t need any parametrization

	
	Extraction of the Root System Architecture

	The Extraction of the RSA is done using a apriori model suitable for arabidopsis: it detect only one main root axes (the longest), all other being at least secondary.

Note

This pipeline can thus analyse root images if the following apply:

	the Petri dish respect the frame detection protocol

	leaves are more opaque than roots

	there is one main axes (order 1), and it is the longuest

Arabidopsis pipeline API

To use the arabidopsis pipeline from python, do:

from rhizoscan.root.pipeline.arabidopsis import pipeline
data = pipeline.run(**inputs_arguments)

	With the following inputs_arguments:

	
	image

	(R) The image filename or a numpy array-like to
analyse

	output

	(R) The commun base of output file. Each module of
the pipeline will save a file with path like output_suffix

	update

	An optional list of the module name to recompute even if
previously computed data is accessible

	metadata

	Optional dictionary-like structure with arbitrary field
names (keys). The metadata is appended to the ‘tree’ output data. Moreover all fields are added to the pipeline namespace and the metadata can be provide values for the pipeline inputs arguments.

	plant_number

	(D) Number of roots systems. default is 1

	plate_width

	(D) The real size of the Petri plate side in the
desired unit for output measurements (default 120).

	leaf_height

	(D) A list of 2 numbers between 0 and 1 that reduces
the search area for leaf with respect to the detected Petri plate. The default is [0.,0.2], meaning that the leaves appear in the 20% superior part of the plate.

	root_max_radius

	(D) Overestimate of the maximum root radius
in pixels. Anything between 1 and 3 times the real value is suitable.

	root_min_radius

	Estimate lower bound of root radius used by the leaf
detection algorithm. It is not a sensitive parameter.
Increasing it tend to increase the leaf area.

	min_dimension

	Minimum size of root system in pixels (default 50).
Anything less than this size is not analysed.

	smooth

	Initial smoothing of the input image before processing.
This value is the sigma parameter (in pixels) of a gaussian kernel (default 1).

	verbose

	If positive, print some intermediate computing state.

(R) Are required arguments, and (D) are arguments that depend on the image data and should be asserted and probably changed if default values are not suitable. For the others, the default values are generic, and should not need to be changed.
.. image and output ar required parameters. Moreover, plant_number, plate width, leaf_height and root_max_radius should be provided if the respective default values are not suitable.

	The pipeline.run returns a dictionary of the pipeline namespace (data in the above example). It is the set of variables used througout the pipeline which contains the given parameters and the computed data. Those are:

	
	pmask

	(numpy arrays) The mask of the detected Petri plate

	rmask

	(numpy arrays) The binary mask of the root axes

	seed_map

	(numpy arrays) The detected leaf area map

	graph

	(RootGraph) The graph representing the root axes in rmask

	tree

	(RootAxialTree) The extracted axial tree representing the root
systems

	bbox

	(tupel of slices) The bounding box of the detected Petri plate in
the original image. rmask and seed_map are for to this region.

	px_ratio

	(float) The size of 1 pixel in the designed measurement unit. It
is computed based on the plate_width and the detected plate area

See also

	
	tutorials:

	
	Root image analysis with python

	Root image analysis with visualea

	back to the User Manual

Image Database

Database file system

	The rhizoscan package provide a simple method to manage and process sets of images through a database mechanism. Here, a database is basically an unordered list of items with the following attributs:

	
	filename

	the image file name

	metadata

	a (hierarchical) structure of descriptive parameters

	output

	the file name base for all data computed from the orignal image

Note

this is not a real database, but it provides similar behaviors

	An image database is made of:

	
	a set of image files stored such that they can all be listed using a shell globbing [http://en.wikipedia.org/wiki/Glob_(programming)] pattern process by the python glob [http://docs.python.org/2/library/glob.html] tool. For example the pattern */*.jpg lists all .jpg images found in any subfolder for the current directory.

	a .ini file that describes the database. In particular, it contains the globbing pattern mentioned above, and the metadata related to the images.

	To load such as databse with python, do:

	>>> from rhizoscan.root.pipeline import database
>>> db, invalid, output = database.parse_image_db('openalea/rhizoscan/test/data/pipeline/arabidopsis/database.ini')

	This function returns:

	
	db

	The database

	invalid

	the list of files that correspond to the globbing pattern but for which filename included metadata were not recognized

	output

	the relative path for storing computed data

Database descriptor:

To understand how to make a database ini file, let’s look at the exemple in [rhisoscan-dir]/test/data/pipeline/arabidopsis/database.ini:

[PARSING]
pattern=[age:str]/Photo_[id:int].jpg
out_dir=outputs
group={0:'A',1:'B'}

[metadata]
plant=arabidopsis thaliana
xp=test RhizoScan
plant_number=5

[A]
group=A
descriptif=.5gln5
glutamin=0.5

[B]
group=B
descriptif=1mM5
nitrate=1

With folder content:

J10/
 + Photo_001.jpg
 + Photo_011.jpg
 + Photo_invalid.jpg
J11/
 + Photo_001.jpg
 + Photo_011.jpg
database.ini

The ini file contains four parts:

	PARSING

	Describe which files to process and which metadata to attach to them.

	The pattern field indicates what files should be processed, by replacing brackets by *, it gives the file globbing pattern */Photo_*.jpg. Then the brackets indicates how to use what is replaced by the *:

	
	the 1st is a string (str) and should be stored as the age metadata

	the 2nd is an integer (int) and is stored as the id metadata

	The brackets is always a pair metadata_name:parameter_type where parameter_type should be either:

	
	a python type (int, float, str, …)

	$: which means to use the content the fields in the ini file that has the respective name (see adding metadata to labeled file name)

	date: identified as a date, it requires PARSING to have a date field (see storing date metadata in file name for details)

If a detected file has a parameter in its file name that does not respect the given data type, it is not added to the database but returned in the invalid output.

The ini file of this exemple also provide a group field to attach metadata to group of images with respect to there position in their respective folder. See grouping database files section for details

	metadata

	default parameters-values to attach to all detected files.

	A & B

	metadata set that can be attach to the group of files with respective label. Here these are metadata to attach to the images of group A and B respectively.

grouping database files

A simple way to attach specific metadata to a group of files is to group them by their position (sorted by file name) in the folder they are stored in. This is usefull if images are given in folder such that images sharing metadata appears in a specific order.

	The grouping mechanism is obtained using the PARSING keyword group. In the example above, it indicates that:

	
	from the image 0 (i.e. the 1st), files are of the group A

	from the image 1 (i.e. the 2nd), files are of the group B

In this exemple there are four images in the database (and one invalid files), which stored by pairs in 2 folders. The first group A contains the first image of each folder, and the group B the second.

adding metadata to labeled file name

If image file or folder name contains specific labels (i.e. word), it an be used to attach related metadata to the respective database elements using the $ parameter type.

With the following file structure:

2012_03_21/
 + GEN01/
 + nitrate_001.jpg
 + nitrate_010.jpg
 + GEN02/
 + nitrate_001.jpg
 + nitrate_010.jpg

2012_03_22/
 + GEN01/
 + nitrate_001.jpg
 + nitrate_010.jpg
 + GEN02/
 + nitrate_001.jpg
 + nitrate_010.jpg
database.ini

Using the ini file:

[PARSING]
pattern=[date:date]/[genotype:$]/nitrate_[nitrate:int].jpg
date=%Y_%m_%d

[metadata]
xp=example

[GEN01]
name=genotype number 1
gene=GEN01

[GEN02]
name=genotype number 2
gene=GEN02

Then, each database element will have a genotype metadata with the content of field GEN01 or GEN02 respectively.

Note

If [$:$] is used then all the fields of the relative metadata group (GEN01 or GEN02) are appended directly at the metadata base of the db element. Here, each element will have the respective name and gene metadata.

storing date metadata in file name

As in the example above, a date type of metadata can be given in the file or folder name. In this case, a date field should be present in PARSING that describe how the date is written, with one of the time format [http://docs.python.org/2/library/time.html] (see the listing of the function strftime for details)

Database operations

Todo

database operation

>>> from rhizoscan.root.pipeline import database
>>> database.filter(db, key=None, value=None, metadata=True)
>>> database.cluster(db, key, metadata=True)
>>> database.get_metadata(db)

Reference Guide

 Python Module Index

 r

 		 	

 		
 r	

 	
 	
 rhizoscan	

Index

 R

R

 	
 	rhizoscan (module)

rhizoscan.geometry

rhizoscan.gui

rhizoscan.image

rhizoscan.ndarray

rhizoscan.root

rhizoscan.workflow

 _static/minus.png

_images/rhizoscan_visualea.png
(GPackage | Category | R Search | (@ Workspace 0~}

v

my package_ (22)

[demo (8)
-

ﬂ openalea (22)

3 phyllotaxis_analysis (12)

& rhizoscan (9)
3 geometry (5)

Ooui(3)
o4 image (5)
ndarray (19)

v

v

v

Rhizoscan package

A root (4)
& workflow (2)

552 arabidopsis histogram analysis
@ arabidopsis pipeline
523 arabidopsis plot RSA !

‘) tissue (10)
= -
"l (5) (CPython Sheil | Logging |

vpltk
- Python 2.7.3 (v2.7.3:70274d53cldd, Apr 9 2012, 20:52:43)
Type "copyright”, "credits" or "license" for more information.

Ipython 1.0.dev -- An enhanced Interactive Python.
? -> Introduction and overview of IPython's features.
squickref -> Quick reference.

o) help -> Python's own help system.
object? -> Details about 'object’, use ‘object??’ for extra details.
%guiref -> A brief reference about the graphical user interface.
/Users/diener/openalea/openal ea/vpl tk/src/openalea/vpLtk/shell/ipythonshell.py:61: UserWarning:
You are using a deprecated version of IPython (please update).
‘warnings. warn(message)

In [1]:

_static/plus.png

_images/tuto_script_graph.png

_images/arabidopsis_dataflow.png
(@ Package | # Category QU Search | [@ Workspace 0~ | @ Workspace 2 - arabidopsis pipeline }

v

7] _my package_ (22)

[demo (8)
L)

g openalea (22)

] phyllotaxis_analysis (12)
@ rhizoscan (9)

3> geometry (5)
Ooui(3)

o4 image (5)

 ndarray (19)

A root (5)

= workflow (2)

553 arabidops

v

v

<v

Yvvvyvyy

[c22/ arabidopsis plot RsA

> ‘) tissue (10)

» [vplants (8)

7 wpltk

Help

AQ@

Python 2.7.3 (v2.7
Type “copyright”,

IPython 1.0.dev --

3:70274d53cldd, Apr 9 2012, 20:52:
credits" or “license” for more information.

An enhanced Interactive Python.

R =1

_static/file.png

_images/histogram_analysis_dataflow.png
(G Package | # Category X Search }— /@ Workspace 0 - | @ Workspace 1 - arabidopsis histogram analysis }-——————

7] _my package_ (22)
[demo (8)

,
g openalea (22)

] phyllotaxis_analysis (12)
& rhizoscan (9)
» 3 geometry (5)

» Toui(3)

» o image(5)
» {0 ndarray (19)
>
>

A root (5)
3 workflow (2)
arabidopsis histogram analysis

[c83/ arabidopsis pipeline

532 arabidopsis plot RsA

> ‘) tissue (10)

» [vplants (8)

7 wpltk

T I) S

Python 2.7.3 (v2.7.3:70274d53cldd, Apr 9 2012, 20:52:43)
Type “copyright”, “credits" or “license" for more information.

IPthnn 1.0.dev -- An enhanced Interactive Python.

-> Introduction and overview of IPython's features.
!lqu\:kref -> Quick reference.
help -> Python's own help system.
object? -> Details about 'object’, use ‘object??’ for extra details.
\%guiref -> A brief reference about the graphical user interface.

e

_static/up.png

_images/tuto_script_seed_map.png

_images/tuto_script_tree.png

_images/tuto_script_image.png

_static/up-pressed.png

_images/tuto_script_rmask.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Welcome to rhizoscan’s documentation!

 		
 Installation

 		
 Installation on Ubuntu with Conda

 		
 0. System Install

 		
 1. Download and install miniconda

 		
 2. Create your own virtual environment

 		
 3. Install Rhizoscan dependencies

 		
 4. Install & test Rhizoscan

 		
 User Manual

 		
 Root image analysis with python

 		
 Step by step image analysis

 		
 Using the arabidopsis pipeline

 		
 Root image analysis with visualea

 		
 Analysis of one root image with visualea

 		
 Analysis of an image database with visualea

 		
 Visualisation of the extracted root system with visualea

 		
 Root image analysis with python

 		
 The image pipeline

 		
 The arabidopsis pipeline

 		
 Image Database

 		
 Database file system

 		
 Database operations

 		
 Reference Guide

_static/ajax-loader.gif

